Sequences of NA values are replaced with values computed by linear
interpolation along rows and/or columns, provided that the neighbouring
values are sufficiently close, as defined by the fillgap
parameter. If
interpolation can be done across both the row and column directions, then the
two values are averaged.
Usage
fillGapMatrix(m, fillgap = 1, debug = getOption("oceDebug"))
Arguments
- m
a numeric matrix.
- fillgap
a vector containing 1 or 2 integers, indicating the maximum width of gaps to be filled. If just one number is given, it is repeated to create the pair. The first element of the pair is the maximum gap height (i.e. row separation in the matrix) that can be filled, and the second is the maximum gap width. The default value of 1 means that only gaps of width or height 1 can be filled. As an exception to these rules, a negative value means to fill gaps regardless of size. It is an error to specify a
fillgap
value that is less than 1.- debug
an integer specifying whether debugging information is to be printed during the processing. This is a general parameter that is used by many
oce
functions. Generally, settingdebug=0
turns off the printing, while higher values suggest that more information be printed. If one function calls another, it usually reduces the value ofdebug
first, so that a user can often obtain deeper debugging by specifying higherdebug
values.
Value
fillGapMatrix returns matrix, with NA values replaced by interpolated values as dictated by the function parameters.
Examples
library(oce)
m <- matrix(1:20, nrow = 5)
# Example 1: interpolate past across gaps of width/height equal to 1
m[2, 3] <- NA
m[3, 3] <- NA
m[4, 2] <- NA
m
#> [,1] [,2] [,3] [,4]
#> [1,] 1 6 11 16
#> [2,] 2 7 NA 17
#> [3,] 3 8 NA 18
#> [4,] 4 NA 14 19
#> [5,] 5 10 15 20
fillGapMatrix(m)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 6 11 16
#> [2,] 2 7 12 17
#> [3,] 3 8 13 18
#> [4,] 4 9 14 19
#> [5,] 5 10 15 20
# Example 2: cannot interpolate across larger groups by default
m <- matrix(1:20, nrow = 5)
m[2:3, 2:3] <- NA
m
#> [,1] [,2] [,3] [,4]
#> [1,] 1 6 11 16
#> [2,] 2 NA NA 17
#> [3,] 3 NA NA 18
#> [4,] 4 9 14 19
#> [5,] 5 10 15 20
fillGapMatrix(m)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 6 11 16
#> [2,] 2 NA NA 17
#> [3,] 3 NA NA 18
#> [4,] 4 9 14 19
#> [5,] 5 10 15 20
# Example 3: increasing gap lets us cover gaps of size 1 or 2
fillGapMatrix(m, fillgap = 2)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 6 11 16
#> [2,] 2 7 12 17
#> [3,] 3 8 13 18
#> [4,] 4 9 14 19
#> [5,] 5 10 15 20